

Oracle Endeca for Mobile

Getting Started Guide – Mobile API

Copyright and Disclaimer

Copyright © 2003, 2012, Oracle and/or its affiliates. All rights reserved.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners. UNIX is a registered trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in
your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated
software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government
end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation
and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed
on the hardware, and/or documentation, shall be subject to license terms and license restrictions
applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

This software or hardware and documentation may provide access to or information on content, products
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

Rosette® Linguistics Platform Copyright © 2000-2011 Basis Technology Corp. All rights reserved.

Teragram Language Identification Software Copyright © 1997-2005 Teragram Corporation. All rights
reserved.

Getting Started Guide – Mobile API

By default, the Mobile API is configured to work with the Camera Store dataset. This guide goes through
the files that need to be changed to configure the Mobile API for another Dgraph. The shopping cart and
checkout are powered by default from a mock API, and this guide also shows you how to change this to
work with your commerce system backend.

XML Configuration Files

/WEB-INF/spring/app-config.xml

1. Change the MDEX Engine host and port:

 <bean id="mdexConfig" class="com.endeca.b2creference.config.MdexConfig">
 <property name="host" value="localhost"/>
 <property name="port" value="13000"/>
 </bean>

2. Update the SelectedRecordsQueryProcessor:

Replace “common.id” in the recordSpecName property to the MDEX Engine property that is used
for the record spec:

<bean class="com.endeca.mobile.services.query.impl.SelectedRecordsQueryProcessor">
 <property name="recordSpecName" value="common.id" />
</bean>

3. Update the SearchInterfaceQueryProcessor:

If you have a localized search interface, that uses the 2 letter language code (i.e. All_en, All_de,
All_es, etc), you can use this query processor to select the appropriate search interface
automatically. If you have only one search interface, change appendLanguageCode to false, and
update searchInterface from “All_” to the search interface for your MDEX Engine:

<bean class="com.endeca.mobile.services.query.impl.SearchInterfaceQueryProcessor">
 <property name="appendLanguageCode" value="true" />
 <property name="defaultLanguageCode" value="en" />
 <property name="searchInterface" value="All_" />
</bean>

4. Update FieldListConfigurationPreProcessor:

This query processor provides an important performance optimization for a Dgraph with a large
number of properties on each record. If you have wide records in your Dgraph, you should
specify only those properties used in the results list.

You can also comment out the entire <bean> element, and do this configuration later.

 <bean class="com.endeca.mobile.services.query.impl.FieldListConfigurationPreProcessor">
 <property name="fieldNames">
 <list>

<value>product.id</value>
<value>product.name</value>
<value>product.price</value>

<value>product.brand.name</value>
<value>product.img_url_large</value>
<value>product.review.avg_rating</value>
<value>product.review.count</value>
<value>product.img_url_thumbnail</value>
<value>product.inventory.count</value>
<value>product.short_desc</value>
<value>product.long_desc</value>
<value>product.brand.img_url</value>
<value>review.title</value>
<value>review.rating</value>
<value>review.timestamp</value>
<value>review.author.name</value>
<value>review.full_text</value>

 </list>
 </property>
 </bean>

5. Comment out the Camera Store specific query processors:

<bean class="com.camerastore.mobile.services.query.impl.RecordFilterQueryProcessor"/>
<bean
class="com.camerastore.mobile.services.query.impl.RefinementExclusionResultsProcessor"/>

You may want to add your own query processors to apply record filters, or post process the
results. These processors provide a good reference example. The
URLParameterRecordFilterProcessor, for example, is used to apply different record filters based
on a request parameter, so that the same controller can be used to provide a web service API for
different types of records, such as product records, review records, and store records.

6. Comment out the Camera Store specific detail query processors

<bean class="com.camerastore.mobile.services.query.impl.RecordDetailResultsProcessor"/>

7. Change the brandDimensionId property to the dimension id of the Brand dimension in your
Dgraph. If you don’t need a Browse by Brand page, don’t worry about this configuration.

You can also specify a list of navStates (space delimited dimension value ids). The refinement
results from each navState will be merged to produce the list of brands. This can be used to get
around precedence rules, and if you don’t need to worry about precedence rules, the N=0 nav
state can be used.

<bean id="brandConfig" class="com.endeca.mobile.config.BrandConfig">
 <property name="brandDimensionId" value="20001"></property>
 <property name="navStates">
 <list>
 <value>0</value>
 </list>
 </property>
</bean>

8. For native iPhone applications in particular, it may be useful to remove HTML tags and entities
from properties. This can be done by adding configuration to the metadataService. The
abstraction layer handles removing HTML, so this configuration does not affect the mobile web

version of these properties.

<bean id="metadataService"
class="com.endeca.b2creference.services.impl.DefaultMetadataService">
 …
 <property name="abstractionMetadataMap">
 <map>
 <entry key="product.short_desc">
 <bean
class="com.endeca.b2creference.services.AbstractionMetadata">
 <property name="stripHtml" value="true"/>
 <property name="preserveNewlines" value="false"/>
 </bean>
 </entry>
 <entry key="product.long_desc">
 <bean
class="com.endeca.b2creference.services.AbstractionMetadata">
 <property name="stripHtml" value="true"/>
 <property name="preserveNewlines" value="true"/>
 </bean>
 </entry>
 </map>
 </property>
</bean>

9. The Mobile API provides a place to configure view specific properties from app-config.xml called
“viewConfig”. Any property in the requestMap will be available as a HttpServletRequest request
attribute. This allows JSP renderers or JSON abstraction APIs to leverage this configuration
without having to create specific new configuration classes.

<!-- Autowired to the BaseController values in the requestMap get added directly to the spring
model so they are available in the view jsps -->
<bean id="viewConfig" class="com.endeca.b2creference.config.ViewConfig">
 <property name="requestMap">
 <map>
 <entry key="STATIC_RESOURCE_PATH"
value="/components/mobile_shared" />
 </map>
 </property>
</bean>

/WEB-INF/web.xml

If you renamed the mobile webapp to something other than ‘mobile’, you will need to update the following:

 <context-param>
 <param-name>webAppRootKey</param-name>
 <param-value>mobile</param-value>
 </context-param>

/WEB-INF/spring/endeca-uicl-config.xml

If you renamed the mobile webapp to something other than ‘mobile’, you will need to update the following:

…
 <entry key="resultsBasePath">
 <value>/mobile/search</value>
 </entry>
…

<entry key="storesBasePath">
<value>/mobile/stores</value>

</entry>
…

<entry key="refiewsBasePath">
<value>/mobile/reviews</value>

</entry>

/WEB-INF/messages/attribute_display_names.properties

The attribute_display_name files are used for localization of property names. To add display names to a
property, you can edit this file. Below is an example, configured for the Camera Store data.

displaynames.product.brand.name = Brand
displaynames.product.review.avg_rating_range = Average Rating
displaynames.product.price_range = Price
displaynames.camera.megapixel_range = Megapixels
displaynames.camera.optical_zoom_range = Optical Zoom
displaynames.product.features = Other Features

Implementing Shopping Cart and Checkout

You need to do 2 things to implement the Oracle Endeca for Mobile cart and checkout functionality.

1. Create an instance of the CartAPI (com.endeca.mobile.services.cart.CartAPI) interface.

These methods all take in the HttpSession object so that they can store transaction information
between requests. If the implementation of the CartAPI needs to query an external service over
HTTP, the apache HttpClient library can be used to maintain a session between the CartAPI
instance and the external service, caching the HttpClient instance in the session. The httpclient-
4.1.jar is included in the project by default to support this use case.

The methods also all throw CartException. The Endeca Mobile applications all store their own
User, Cart, and Transaction state (user saved addresses, selected transaction addresses and
cards, shipping options, subtotal amounts, etc). For adding, updating and removing saved
addresses and credit cards and for selecting addresses, cards, and shipping methods, the Mobile
applications will their own state accordingly unless a CartException is thrown. For instance, the if
addAddress method does not throw an exception, the mobile applications will update their User
state object, adding the Address object passed into the addAddress CartAPI method. This is not
the case with the shopping cart items, the order summary, and the shipping methods, which are
only updated from what is returned from the CartAPI methods.

2. Configure /WEB-INF/spring/app-config.xml to point to your class. By default, the Endeca API is
set up to use a MockCartAPI class, which you can use as a reference or a starting place for your
own implementation.

<bean id="cartApiService" class="com.endeca.mobile.services.cart.impl.MockCartAPI" />

QueryProcessor Reference

RecordFilterQueryPreProcessor

This pre-processor sets the given recordFilter on the query. If the query contains an existing record filter,
it creates a new record filter from the union (AND) of the given recordFilter and the existing record filter,
and sets this on the query.

Fully Qualified Class Name:
com.endeca.b2creference.services.query.impl.RecordFilterQueryPreProcessor

Property(ies):
recordFilter

Query types supported:
Navigation Query
Aggregate Record Query

Example:

<bean

class="com.endeca.b2creference.services.query.impl.RecordFilterQueryPreProces

sor">

<property name="recordFilter" value=”pBuyable:1” />

</bean>

SimpleLoggingPostProcessor

Fully Qualified Class Name:
com.endeca.b2creference.services.query.impl.SimpleLoggingPostProcessor

Property(ies):
logserverHost
logserverPort

Query types supported:
Navigation Query
Aggregate Record Query

Example:

<bean

class="com.endeca.b2creference.services.query.impl.RecordFilterQueryPreProces

sor">

<property name="logserverHost" value=”localhost” />

<property name="logserverPort" value=”15010” />

</bean>

AggregateRecordsPreProcessor

This pre-processor sets the rollup (aggregation) key on the navigation query.

Fully Qualified Class Name:
com.endeca.mobile.services.query.impl.AggregateRecordsPreProcessor

Property(ies):
aggregationKey

Query types supported:
Navigation Query

Example:

<bean

class="com.endeca.mobile.services.query.impl.AggregateRecordsPreProcessor">

<property name="aggregationKey" value=”pItemID” />

</bean>

FieldListConfigurationPreProcessor

This pre-processor sets the selection (field list) on the navigation query. This is used to limit the properties
returned for navigation queries. For mobile, there is usually limited screen space, which naturally limits
the amount of properties needed for navigation queries. Typically an MDEX Engine will be configured to
show for more properties with navigation queries than a mobile device needs. This pre-processor is used
to reduce the properties and dimensions to only the necessary ones, reducing the size of the response
that needs to be sent to the mobile device.

Fully Qualified Class Name:
com.endeca.mobile.services.query.impl.FieldListConfigurationPreProcessor

Property(ies):
fieldNames

Query types supported:
Navigation Query

Example:

<bean

class="com.endeca.mobile.services.query.impl.FieldListConfigurationPreProcess

or">

 <property name="fieldNames">

 <list>

 <value>product.id</value>

 <value>product.name</value>

 <value>product.price</value>

 <value>product.brand.name</value>

 <value>product.img_url_large</value>

 <value>product.review.avg_rating</value>

 <value>product.review.count</value>

 <value>product.img_url_thumbnail</value>

 <value>product.inventory.count</value>

 </list>

 </property>

</bean>

GeoFilterDistancePropertyPostProcessor

This post-processor makes it easier to access the kilometers_to_* and miles_to_* properties. It removes
the kilometers_to_ and miles_to_ properties that the MDEX Engine returns when a geo filter or geo sort is
applied, and adds 2 new properties that are the name of the geo filter property with ".distance_mi" or
".distance_km" appended.

For example, for the sort Ns=store.geocode(42.3621088,-71.0810343), the MDEX Engine returns the
properties:

kilometers_to_store.geocode(42.3621088,-71.0810343) = 31.000662
miles_to_store.geocode(42.3621088,-71.0810343) = 19.262912

For the range filter, Nf=store.geocode|GCLT 42.3621088,-71.0810343 50, the MDEX Engine returns the
properties:

kilometers_to_store.geocode|GCLT 42.3621088,-71.0810343 50 = 31.000662
miles_to_store.geocode|GCLT 42.3621088,-71.0810343 50 = 19.262912

This post-processor will remove these properties and create the following properties:

store.geocode.distance_km = 31.000662
store.geocode.distance_mi = 19.262912

Fully Qualified Class Name:
com.endeca.mobile.services.query.impl.GeoFilterDistancePropertyPostProcessor

Property(ies):
<NONE>

Query types supported:
Navigation Query

Example:

<bean

class="com.endeca.mobile.services.query.impl.GeoFilterDistancePropertyPostPro

cessor" />

GeoLookupPreProcessor

Where a user’s device cannot provide a gecode for geospatial search, this pre-processor uses the
Google Maps Geocoding service to convert the text from a query string parameter into a geocode. If the
text can be converted into a geocode, this pre-processor adds a geocode range filter (GCLT) to the
navigation query, with a radius equal to the value of the geoFilterRadiusKm property. A geocode cache is
maintained, the location of which is configured with the cacheFileResource property.

Fully Qualified Class Name:
com.endeca.mobile.services.query.impl.GeoLookupPreProcessor

Property(ies):
locationParameter
geocodeProp
geoFilterRadiusKm
cacheFileResource

Query types supported:
Navigation Query

Example:
<bean class="com.endeca.mobile.services.query.impl.GeoLookupPreProcessor">

 <property name="locationParameter" value="location" />

 <property name="geocodeProp" value="store.geocode" />

 <property name="geoFilterRadiusKm" value="50.0" />

 <property name="cacheFileResource" value="/WEB-INF/zipgeocache.txt" />

</bean>

HiddenDimensionsPostProcessor

Fully Qualified Class Name:
com.endeca.mobile.services.query.impl.HiddenDimensionsPostProcessor

Property(ies):
<NONE>

Query types supported:
Navigation Query

Example:

MobileLoggingPostProcessor

This post-processor extends the SimpleLoggingPostProcessor, adding a MOBILE_PROFILE string to the
log entry, based on the value of the Mp request parameter.

Fully Qualified Class Name:
com.endeca.mobile.services.query.impl.MobileLoggingPostProcessor

Property(ies):
logserverHost
logserverPort

Query types supported:
Navigation Query

Example:

<bean

class="com.endeca.mobile.services.query.impl.MobileLoggingPostProcessor">

<property name="logserverHost" value=”localhost” />

<property name="logserverPort" value=”15010” />

</bean>

SearchInterfaceQueryProcessor

This pre-processor adds the given searchInterface to searches on the Navigation Query if they don’t
contain a search interface. If appendLanguageCode is set to true, it will try to resolve the locale, and
append the language code to the end of the searchInterface.

Fully Qualified Class Name:
com.endeca.mobile.services.query.impl.SearchInterfaceQueryProcessor

Property(ies):
searchInterface
appendLanguageCode
defaultLanguageCode

Query types supported:
Navigation Query

Example:

<bean

class="com.endeca.mobile.services.query.impl.SearchInterfaceQueryProcessor">

 <property name="appendLanguageCode" value="true" />

 <property name="defaultLanguageCode" value="en" />

 <property name="searchInterface" value="All_" />

</bean>

SelectedRecordsQueryProcessor

This query processor queries enables the selected records parameter (Rsel) to work properly. It builds a
record filter based on the value of this parameter and adds it to the navigation query.

Fully Qualified Class Name:
com.endeca.mobile.services.query.impl.SelectedRecordsQueryProcessor

Property(ies):
recordSpecName

Query types supported:
Navigation Query

Example:

<bean

class="com.endeca.mobile.services.query.impl.SelectedRecordsQueryProcessor">

 <property name="recordSpecName" value="common.id" />

</bean>

URLParameterRecordFilterProcessor

This pre-processor creates and adds to the query, a new record filter from the concatenation of the value
of the recordFilterPrefix property and the value of query string parameter configured by the urlParameter
property. If the query contains an existing record filter, it creates a record filter from the union (AND) of the
new recordFilter and the existing record filter, and sets this on the query. The recordFilterPrefix and the
value of the urlParameter must not be null. If either are null, no record filter will be created.

Fully Qualified Class Name:
com.endeca.mobile.services.query.impl.URLParameterRecordFilterProcessor

Property(ies):
recordFilterPrefix
urlParameter

Query types supported:
Navigation Query
Aggregate Record Query

Example:

<bean

class="com.endeca.mobile.services.query.impl.URLParameterRecordFilterProcesso

r">

 <property name="recordFilterPrefix" value="review.product.id:" />

 <property name="urlParameter" value="product_id" />

</bean>

